André Luís Müller

Análise numérica da estabilidade de poços de petróleo considerando a variabilidade espacial e acoplamento fluido-mecânico

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Área de concentração: Estruturas.

> Orientadores: Eurípedes do Amaral Vargas Jr. Luiz Eloy Vaz

Rio de Janeiro, abril de 2007

André Luís Müller

Análise numérica da estabilidade de poços de petróleo considerando a variabilidade espacial e acoplamento fluido-mecânico

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Engenharia Civil da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Eurípedes do Amaral vargas Jr. Orientador Departamento de Engenharia Civil - PUC-Rio

Luiz Eloy Vaz Coorientador

Departamento de Mecânica Aplicada e Estruturas - UFRJ

Luiz Fernando Campos Ramos Martha Departamento de Engenharia Civil - PUC-Rio

Deane de Mesquita Roehl Departamento de Engenharia Civil - PUC-Rio

Roberto Francisco de Azevedo Departamento de Engenharia Civil - UFV

Armando Prestes de Menezes Filho CEMPES/PETROBRAS

José Eugênio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 20 de abril de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

André Luís Müller

Engenheiro Civil Graduado pela Universidade de Passo Fundo RS. Mestrado em engenharia civil na área de estruturas pela Pontificia Universidade Católica do Rio de Janeiro.

Ficha Catalográfica

Müller, André Luís

Análise numérica da estabilidade de poços de petróleo considerando a variabilidade espacial e acoplamento fluido-mecânico / André Luís Muller ; orientadores: Eurípedes do Amaral Vargas Jr., Luiz Eloy Vaz. – 2007.

163 f. : il. ; 30 cm

Tese (Doutorado em Engenharia Civil)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

1. Engenharia civil – Teses. 2. Poços de petróleo. 3. Variabilidade espacial. 4. Análise numérica. I. Vargas Júnior, Eurípedes do Amaral. II. Vaz, Luiz Eloy. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Engenharia Civil. IV. Título.

CDD: 624

PUC-Rio - Certificação Digital Nº 0310917/CA

A minha esposa Luciane e ao meu filho Lucas.

Agradecimentos

Aos meus orientadores Eurípedes do Amaral Vargas Jr. e Luiz Eloy Vaz pelo estímulo, orientação, oportunidades, convivência e amizade para a realização deste trabalho.

Aos professores que participaram da Comissão examinadora.

Aos professores Luiz Fernando Campos Ramos Martha, Deane Mesquita Roehl e João Luiz Elias Campos pela colaboração no exame de qualificação e na avaliação da proposta de tese.

A FAPERJ pelos auxílios financeiros concedidos através do programa de bolsa de doutorado aluno nota 10.

A Petrobrás e aos pesquisadores do Cenpes que contribuíram no desenvolvimento desse trabalho.

A todos os amigos e colegas, em especial aos colegas da sala 609, Diego Frederico e Igor e ao engenheiro José Roberto Silvestre.

Resumo

Müller, André Luís; Vargas Jr, Eurípedes do Amaral; Vaz, Luiz Eloy. Análise numérica da estabilidade de poços de petróleo considerando a variabilidade espacial e acoplamento fluido-mecânico. Rio de Janeiro, 2007. 163p. Tese de Doutorado - Departamento de Engenharia Civil, Pontificia Universidade Católica do Rio de Janeiro.

Em geral, a análise da estabilidade e a análise das respostas de poços de petróleo são realizadas de forma determinística em relação às propriedades mecânicas e hidráulicas do meio rochoso. No entanto, sabe-se que os meios rochosos e em particular rochas sedimentares, podem mostrar um considerável de heterogeneidades, em micro, meso grau e macro-escala. Essas heterogeneidades produzem variabilidade espacial nas propriedades mecânicas e hidráulicas dos meios rochosos. Essa variabilidade mostra em geral um caráter espacial pronunciado. O presente estudo propõe o desenvolvimento de procedimentos de análise numérica, utilizando elementos finitos, de processos fluido mecânicos acoplados, monofásicos e bifásicos, que levem em conta a variabilidade espacial de propriedades hidráulicas e mecânicas e a variabilidade das condições iniciais de tensões e poro pressões. Nesse estudo, empregam-se os procedimentos numéricos desenvolvidos em duas fases distintas. Na análise probabilística da estabilidade de poços e na análise probabilística das respostas dos pocos durante a produção, considerando o acoplamento fluido mecânico com fluxo bifásico.

Palavras-chave

Poços de petróleo; Variabilidade espacial; Análise numérica.

Abstract

Müller, André Luís; Vargas Jr, Eurípedes do Amaral; Vaz, Luiz Eloy. Numerical borehole stability analysis considering spatial variability and fluid-mechanical coupling. Rio de Janeiro, 2007. 163p. DSc. Thesis - Department of Civil Engineering, Pontifícia Universidade Católica do Rio de Janeiro.

In general, borehole stability analysis and borehole response analysis are carried out considering that both hydraulic and mechanical parameters of the rock mass are deterministic. However, it is a well known fact, that rock masses and in particular sedimentary rock masses may show a considerable degree of heterogeneity, in micro, meso and macro scale. These heterogeneities produce spatial variability in mechanical and hydraulic properties of the rock medium. This variability can be very pronounced. The present work proposes the development of numerical analysis procedures, using finite elements, in order to analyze single and two phases flow, coupled fluid mechanical processes that take into account the spatial variability of hydraulic and mechanical properties and the variability of the initial stresses and pore pressures. In this study, the developed numerical procedures are used in two distinct phases. In the borehole stochastic stability analysis and in the borehole stochastic response analysis during the production, considering fluid mechanical coupling and two phase flow.

Keywords

Borehole; Spatial variability; Numerical analysis.

Sumário

1 Introdução	21
1.1. Descrição do problema	21
1.2. Revisão bibliográfica	23
1.3. Escopo do trabalho	26
2 Formulação determinística para problemas de acoplamento fluido	
mecânico	31
2.1. Introdução	31
2.2. Modelo físico	31
2.3. Equação de equilíbrio	34
2.4. Equação de fluxo	36
2.4.1. Fluxo trifásico	36
2.4.2. Fluxo bifásico	39
2.4.3. Fluxo monofásico	40
2.5. Solução do problema de valor de contorno	40
2.6. Formulação em elementos finitos	41
2.6.1. Acoplamento fluido mecânico com fluxo monofásico	41
2.6.2. Acoplamento fluido mecânico com fluxo bifásico	43
2.7. Discretização no tempo	46
2.7.1. Propriedades numéricas da discretização no tempo	46
3 Análise não linear	49
3.1. Introdução	49
3.2. Análise não linear local (modelos constitutivos e análise	
elastoplástica)	49
3.2.1. Princípio da máxima dissipação plástica	49
3.2.2. Método de solução do problema de programação matemática	53
3.2.3. Função de escoamento (critério de Mohr Coulomb)	56
3.2.4. Função de escoamento (critério de Von Mises)	57
3.3. Modelo constitutivo para permeabilidade	57

3.4. Análise não linear global	58
3.4.1. Acoplamento fluido mecânico com fluxo monofásico	58
3.4.2. Acoplamento fluido mecânico com fluxo bifásico	60
4 Procedimentos de solução	65
4.1. Procedimento totalmente acoplado	65
4.2. Procedimento stagerred	67
4.2.1. Procedimento staggered para o problema de acoplamento fluido)
mecânico com fluxo monofásico	67
4.2.2. Procedimento staggered para o problema de acoplamento fluido)
mecânico com fluxo bifásico	69
5 Exemplos de análise determinística	72
5.1. Introdução	72
5.2. Exemplo 1: adensamento unidimensional	73
5.3. Exemplo 2: poço vertical	77
5.3.1. Comparação entre os procedimentos de solução	80
5.4. Exemplo 3: fluxo bifásico unidimensional	82
5.5. Exemplo 4: acoplamento fluido mecânico com fluxo bifásico	83
5.5.1. Comparação entre os procedimentos de solução	85
6 Formulação probabilística para problemas de acoplamento fluido	
mecânico	88
6.1. Introdução	88
6.2. Alguns fundamentos da probabilidade e da estatística	88
6.2.1. Algumas hipóteses consideradas para as variáveis aleatórias	89
6.2.2. Fundamentos da probabilidade e da estatística para funções de	
variáveis aleatórias	90
6.2.3. Funções de covariância	91
6.2.4. Geração de variáveis aleatórias independentes	93
6.2.5. Funções densidade de probabilidade e transformação de variávo	eis95
6.2.6. Geração de campos aleatórios	96
6.3. Variabilidade espacial das curvas $P_c - S_w$	101
6.4. Métodos de análise probabilística	102

6.4.1. Simulação de Monte Carlo (MC)	102
6.4.2. Expansão de Neumann (NE)	103
6.4.3. Método das perturbações	105
6.5. Análise de confiabilidade	107
6.6. Procedimento numérico para determinação de PI	109
7 Análise de sensibilidade	112
7.1. Introdução	112
7.2. Método de diferenciação direto	112
7.3. Método de diferenciação adjunto	114
7.4. Aproximação por diferenças finitas	115
7.5. Análise de sensibilidade para o procedimento staggered	117
7.6. Análise de sensibilidade para o procedimento totalmente acoplad	o119
7.7. Análise de sensibilidade das tensões	120
7.8. Exemplo de análise de sensibilidade	120
8 Exemplos	127
8.1. Introdução	127
8.1.1. Exemplo 1: determinação de PI considerando comportamento	
determinístico	128
8.1.2. Exemplo 2: análise probabilística para uma determinada PI	129
8.1.3. Exemplo 3: determinação de PI considerando comportamento	
probabilístico	141
8.1.4. Exemplo 4: análise probabilística de um poço horizontal	
considerando fluxo bifásico	143
9 Conclusões e sugestões	150
10 Referências bibliográficas	154

Lista de figuras

Figura 1.1 Poço vertical para análise probabilística da estabilidade	27
Figura 1.2 Poço horizontal para análise estatística considerando fluxo	
bifásico	27
Figura 2.1 Volume elementar representativo	32
Figura 2.2 Volume de controle para balanço de massa do fluido.	37
Figura 5.1 Coluna poroelástica.	73
Figura 5.2 Poro pressão na base da coluna poroelástica	76
Figura 5.3 Poro pressão ao longo da coluna poroelástica	76
Figura 5.4 Deslocamento no topo da coluna poroelástica	77
Figura 5.5 Malha de elementos finitos e detalhe do poço vertical	78
Figura 5.6 Poro pressões, solução analítica x solução numérica	79
Figura 5.7 Tensão total $\sigma_{_{yy}}$, solução analítica x solução numérica	79
Figura 5.8 Região plastificada para PI =5 (MPa) (a) e PI =20 (MPa) (b)	81
Figura 5.9 Coluna de solo sob fluxo bifásico	82
Figura 5.10 Saturação da fase molhante na coluna ao longo do tempo	83
Figura 5.11 Malha de elementos finitos e detalhe do poço horizontal	85
Figura 5.12 Tempo relativo de análise para os procedimentos de soluç	ão86
Figura 6.1 Funções de covariância com comprimento de correlação	93
Figura 6.2 Hipercubo latino (ilustração)	95
Figura 6.3 Campo aleatório exponencial para permeabilidade	100
Figura 6.5 Campo aleatório esférico para permeabilidade	101
Figura 6.6 Curva $P_c - S_w$ para diferentes valores ξ .	102
Figura 7.1 Coluna poroelástica e elemento de referência para análise o	le
sensibilidade	121
Figura 7.2 Sensibilidade dos deslocamentos verticais em relação à K, e	(1
segundo)	122
Figura 7.3 Sensibilidade dos deslocamentos verticais em relação à K,	
(100 segundos)	122
Figura 7.4 Sensibilidade dos deslocamentos verticais em relação à G,	(1
segundo)	123

Figura 7.5 Sensibilidade dos deslocamentos verticais em relação à G,	
(100 segundos)	123
Figura 7.6 Sensibilidade das poro pressões em relação à K, (1 seguno	10)124
Figura 7.7 Sensibilidade das poro pressões em relação à K, (100	
segundos)	124
Figura 7.8 Sensibilidade das poro pressões em relação à G, (1 seguno	do)12
Figura 7.9 Sensibilidade das poro pressões em relação à G, (100	
segundos)	125
Além da verificação dos resultados obtidos com a formulação proposta, const	atou-
se com o exemplo analisado que as respostas em deslocamentos e poro pressô	ies
são mais sensíveis às variações da permeabilidade intrínseca do que às variaç	ões
do módulo de elasticidade transversal. Verificou-se também o caráter transier	ite
das respostas obtidas, ou seja, as sensibilidades variam consideravelmente no	
tempo.	125
Figura 8.1 Limites de PI considerando comportamento determinístico	129
Figura 8.2 Média de σ_{yy} para Cv = 0.10 em $\beta = 0^{0}$	130
Figura 8.3 Média de σ_{yy} para Cv = 0.20 em $\beta = 0^0$	131
Figura 8.4 Desvio padrão de σ_{yy} para Cv = 0.10 em $\beta = 0^0$	132
Figura 8.5 Desvio padrão de $\sigma_{_{yy}}$ para Cv = 0.20 em $\beta = 0^0$	133
Figura 8.6 Média da poro pressão para Cv = 0.10 em $\beta = 0^0$	133
Figura 8.7 Média da poro pressão para Cv = 0.20 em $\beta = 0^0$	134
Figura 8.8 Desvio padrão da poro pressão para Cv = 0.10 em $\beta = 0^0$	134
Figura 8.9 Desvio padrão da poro pressão para Cv = 0.20 em $\beta = 0^0$	135
Figura 8.11 Desvio padrão de $\sigma_{_{yy}}$ para Cv = 0.10 e Cv = 0.20 em β =	0° 137
Figura 8.12 Desvio padrão da poro pressão para Cv = 0.10 (a) e Cv =	0.20
(b)	137
Figura 8.13 Desvio padrão da poro pressão para Cv = 0.10 e Cv = 0.2	0
em $\beta = 0^0$	138
Figura 8.14 Probabilidade de plastificação para $Cv = 0.10$ (a) e $Cv = 0$.20
(b)	138
Figura 8.15 Probabilidade de plastificação para Cv = 0.10 e Cv = 0.20	em

$\beta = 0^{0}$	139
Figura 8.16 Campo aleatório para k e gráfico para k normalizada	140
Figura 8.17 Campo aleatório para G e gráfico para G normalizado	140
Figura 8.18 Campo aleatório para c e gráfico para c normalizada	140
Figura 8.19 Campo aleatório para Φ e gráfico para Φ normalizado	140
Figura 8.20 Área plastificada para uma determinada simulação de Mo	nte
Carlo	141
Figura 8.21 Probabilidade de falha x Pressão interna	142
Figura 8.22 Região com probabilidade de falha para Cv=0.10 e $P_{f_{target}}$	=
0.01	142
Figura 8.23 Média da saturação de fluido molhante	145
Figura 8.24 Desvio padrão da saturação de fluido molhante	145
Figura 8.25 Média da tensão principal S1 no ponto A	146
Figura 8.26 Média da tensão principal S1 no ponto B	147
Figura 8.27 Desvio padrão da tensão principal S1 no ponto A	148
Figura 8.28 Desvio padrão da tensão principal S1 no ponto B	148
Figura 8.29 Probabilidade de plastificação	149

Lista de tabelas

Tabela 5.1 Dados da coluna poroelástica	75
Tabela 5.2 Dados do poço vertical	78
Tabela 5.3 Procedimento e tempo relativo de análise para o caso A	80
Tabela 5.4 Procedimento e tempo relativo de análise para o caso B	81
Tabela 5.5 Dados da coluna de solo sob fluxo bifásico	82
Tabela 5.6 Dados do poço horizontal	84
Tabela 7.1 Tempo relativo para análise de sensibilidade	126
Tabela 8.1 Dados dos exemplos 1, 2 e 3	128
Tabela 8.2 Tempo relativo para análise do problema	136
Tabela 8.3 Dados do exemplo 4	144

Lista de símbolos

g	Aceleração da gravidade, função
Φ	Ângulo de atrito
\mathbf{B}^{0}	Aproximação da Hessiana da função de Lagrange
$A_{ m lim}$	Área limite
A_p	Área plastificada
$A_{p_{t} \operatorname{arg} et}$	Área plastificada pré-estabelecida
λ	Autovetores
У	Campo aleatório correlacionado
h	Carga de elevação
α	Coeficiente de Biot
ρ	Coeficiente de correlação
Cv	Coeficiente de variação
V	Coeficientes de Poisson drenado
V _u	Coeficientes de Poisson não drenado
С	Coesão, coeficiente de difusividade
c λ_i	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i>
c λ_i φ_n	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório
c λ_i φ_n Ψ	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores
c $λ_i$ $φ_n$ Ψ Γ	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores Contorno
c λ_i φ_n Ψ Γ Cov	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores Contorno Covariância
c λ_i φ_n ψ Γ Cov F_{VM}	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores Contorno Covariância Critério de escoamento de Von Mises
c λ_i φ_n Ψ Γ Cov F_{VM} F_{MC}	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores Contorno Covariância Critério de escoamento de Von Mises
c $λ_i$ $φ_n$ ψ Γ Γ Cov F_{VM} F_{MC} $ρ_π$	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores Contorno Covariância Critério de escoamento de Von Mises Critério de escoamento do Mohr Coulomb Densidade do fluido
c $λ_i$ $φ_n$ ψ Γ Cov F_{VM} F_{MC} $ρ_π$ u	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores Contorno Covariância Critério de escoamento de Von Mises Critério de escoamento do Mohr Coulomb Densidade do fluido
c λ_i φ_n ψ Γ Cov F_{VM} F_{MC} ρ_{π} u s	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores Contorno Covariância Critério de escoamento de Von Mises Critério de escoamento do Mohr Coulomb Densidade do fluido Deslocamentos Desvio padrão
c $λ_i$ $φ_n$ ψ Γ Γ Cov F_{VM} F_{MC} $ρ_π$ u s d	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores Contorno Covariância Critério de escoamento de Von Mises Critério de escoamento do Mohr Coulomb Densidade do fluido Deslocamentos Desvio padrão Direção de busca
c $λ_i$ $φ_n$ ψ Γ Γ Cov F_{VM} F_{MC} $ρ_π$ u s d D^p	Coesão, coeficiente de difusividade Comprimento de correlação na direção <i>i</i> Conjunto aleatório Conjunto de autovetores Contorno Covariância Critério de escoamento de Von Mises Critério de escoamento do Mohr Coulomb Densidade do fluido Deslocamentos Desvio padrão Direção de busca

Ω	Domínio
W ^e	Energia de deformação elástica
W^{p}	Energia de deformação plástica
\in^{T}	Erro por truncamento
ξ	Escala de Leverett
E_{σ}	Espaço das tensões admissíveis
Н	Expoente de Hurst
W	Fase molhante
nw	Fase não molhante
F	Fator de correção
$R_{s\pi}$	Fator de dissolução de gás no líquido
В	Fator de variação de volume
b	Forças de corpo
t	Forças de superfície
$P(Z=z_j(\mathbf{x}_k))$	Função cumulativa de probabilidade
F, S	Função de falha
Ĺ	Função de Lagrange
ω	Função de penalidade
$\vartheta(r_j(\mathbf{x}_k))$	Função densidade de probabilidade
$S_{f\!f}$	Função densidade espectral
I, IF, IS	Função indicadora de falha
$f(\mathbf{x})$	Função objetivo
C _{rr}	Funções de covariância
$\mathbf{N}_u, \mathbf{N}_p$	Funções de forma
$f_i(r_j(\mathbf{x}_k))$	Funções de variáveis aleatórias
\mathbf{g}^k	Gradiente da função objetivo
S	Grau de saturação
Δt	Incremento de tempo
β	Índice para o tamanho dos poros, coeficiente de
	Skempton

PI	Limite inferior para pressão interna
PI_u	Limite superior para pressão interna
m_{π}	Massa de fluido
L	Matriz de acoplamento fluido mecânico, matriz de
	transformação
G	Matriz de armazenamento
В	Matriz de compatibilidade, matriz Hessiana
$\mathbf{C}_{f\!f}$	Matriz de covariância das respostas
C _{rr}	Matriz de covariância das variáveis aleatórias
H _w	Matriz de fluxo da fase molhante
H _{nw}	Matriz de fluxo da fase não molhante
Н	Matriz de fluxo, matriz Hessiana
k	Matriz de permeabilidade, vetor de número de ondas
K	Matriz de rigidez
\mathbf{A}^k	Matriz dos gradientes das restrições
\mathbf{W}^k	Matriz hessiana da função de Lagrange
L_c , L_{nw} , L_w	Matrizes de acoplamento fluido mecânico
$\mathbf{G}_{\mathbf{w}},\mathbf{G}_{\mathbf{nw}}$	Matrizes de armazenamento
$\mathbf{O}_{\mathrm{w}},\mathbf{O}_{\mathrm{nw}},\mathbf{M}_{\mathrm{w}},\mathbf{M}_{\mathrm{nw}},\mathbf{P}_{\mathrm{w}},$	Matrizes para o problema de fluxo bifásico
P _{nw}	
χ	Média volumétrica
G	Módulo de elasticidade transversal
G	Módulo plástico generalizado
K_T	Módulo volumétrico do esqueleto
K_{π}	Módulo volumétrico do fluido
K_s	Módulo volumétrico dos grãos
K_u	Módulo volumétrico não drenado
γ	Multiplicadores de Lagrange
Ν	Número de simulação de Monte Carlo
abla	Operador de derivação

heta	Parâmetro de integração
b^0	Parâmetro para aproximação da Hessiana
nr	Parâmetro para L-BFGS
l	Penalidades
k	Permeabilidade
$k_{r\pi}$	Permeabilidade relativa
k _{rw}	Permeabilidade relativa da fase molhante
k _{rnw}	Permeabilidade relativa da fase não molhante
η	Perturbação relativa
р	Poro pressão
φ	Porosidade
\mathbf{x}_k	Posição k
<i>p</i> _c	Pressão capilar
p_c^{ref}	Pressão capilar de referência
p _w	Pressão da fase molhante
P _{<i>nw</i>}	Pressão da fase não molhante
P_d	Pressão de deslocamento
p^{f}	Pressão de fluido
PI	Pressão interna
$PI_{\lim it}$	Pressão interna limite
J_1	Primeiro invariante das tensões
P_f	Probabilidade de falha
$P_{f_{calc}}$	Probabilidade de falha calculada
$P_{f_{t \arg et}}$	Probabilidade de falha pré-estabelecida
$Z_f(\mathbf{k})$	Processo aleatório
π	Representação de uma fase π
\mathbf{F}_{u}	Resíduo para equação de equilíbrio
\mathbf{F}_p	Resíduo para equação de fluxo
F _{pnw}	Resíduo para pressão da fase não molhante

\mathbf{F}_{Sw}	Resíduo para saturação da fase molhante
T_0	Resistência à tração
c (x)	Restrição
r _i	Restrições
S_w	Saturação da fase molhante
S _{nw}	Saturação da fase não molhante
S_{e}	Saturação efetiva
S _{rw}	Saturação residual da fase molhante
S _{rnw}	Saturação residual da fase não molhante
$J_{\scriptscriptstyle 2D}$	Segundo invariante das tensões desviadoras
t	Tamanho do passo
t	Tempo
σ_y	Tensão de escoamento
$\sigma_{P \max}$	Tensão principal máxima
τ	Tensões cisalhantes
D	Tensor constitutivo elástico
\mathbf{D}_T	Tensor constitutivo elasto-plástico
3	Tensor de deformações
σ	Tensor de tensões
σ'	Tensor de tensões efetivas
$J_{_{3D}}$	Terceiro invariante das tensões desviadoras
tol	Tolerância
F	Transformada de Fourier
Var	Variância
a	Variáveis internas
r_{j}	Variável aleatória
q	Vazão
m	Vetor auxiliar
n	Vetor auxiliar
q, X	Vetor de incógnitas

R	Vetor de resíduos
Z	Vetor de variáveis aleatórias independentes
X	Vetor solução
μ_w	Viscosidade da fase molhante
μ_{nw}	Viscosidade da fase não molhante
μ	Viscosidade dinâmica
V	Volume
VER	Volume elementar representativo